

Diastereo- and Enantioselective Synthesis of 4- and 3,4-Substituted 2-Acetoxy-butyrolactones

Dieter Enders*, Hongbin Sun, Frederik R. Leusink

Institut für Organische Chemie, Rheinisch-Westfälische Technische Hochschule Professor-Pirlet-Straße 1, D-52074 Aachen, Germany

Received 15 February 1999; revised 24 March 1999; accepted 25 March 1999

Abstract: An efficient asymmetric synthesis of 4-mono- and 3,4-disubstituted 2-acetoxy-butyrolactones 2 has been developed, based on a hydrazone-mediated asymmetric aldol reaction, an intramolecular lactonization and a stereoselective hydrogenation of the resulting butenolides 1. An application of this process in the synthesis of the natural hunger substance 3 (ee = 90%) is also presented. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Hydrazones, Lactones, Aldol Reactions, Catalytic Hydrogenation, Asymmetric Synthesis

2-Hydroxylated butyrolactones are common structural features of many natural and synthetic biologically active compounds and are also versatile synthetic building blocks [1]. For example, some 4-alkyl-2-hydroxybutyrolactones are excellent food intake-control substances [1a]. (2S,4S)-2-hydroxy-4-hydroxymethyl-butyrolactone 3 (3-DPA lactone) is a natural hunger substance [1b,2a]. Racemic butyrolactone 2a has been used as a key intermediate in the total synthesis of racemic nonactin [1c]. Moreover, this class of lactones have been used as precursors to 1,3-diols, which are structural fragments frequently found in many natural products [1d,e].

Scheme 1

Due to the wide range of its utilities, the stereoselective synthesis of this class of compounds has received considerable attention [2]. To the best of our knowledge, access to enantiomerically highly enriched 2-oxygenated butyrolactone derivatives has been dominated by carbohydrate approaches. Using carbohydrates as "chiral pool" is attractive due to its appropriate functionalization and predictive power.

However, the limited availability of suitable carbohydrates and the difficulty in obtaining the intended stage of deoxygenation and stereochemical control with a certain target molecule has promoted the necessity to develop a flexible non-carbohydrate approach. We envisaged that an extension of our previous work [3] on the enantioselective synthesis of silyl protected isotetronic acids readily permits the enantioselective synthesis of

the 2-acetoxy-butyrolactones 2 via stereoselective hydrogenation of the corresponding butenolides 1 (Scheme 1). Herein we report a novel approach to enantiomerically enriched 4- and 3,4-substituted 2-acetoxy-butyrolactones 2 employing our hydrazone methodology and an application of this process in the asymmetric synthesis of a natural hunger substance 3 is also presented.

$$\begin{array}{c} \text{A} \\ \text{$$

Reagents and conditions: a) SAEP, c-hexane, TsOH, reflux, 83%; b) 1. LDA, LiBr, THF, -78° C; 2. R^{1} CHO, -90° C $\rightarrow -78^{\circ}$ C; c) 1. t-BuOK, THF, -30° C $\pm 5^{\circ}$ C; 2. 1 M citric acid solution; 3. flash chromatography. d) 1. LDA, LiBr, THF, -78° C; 2. CH₃I or BnBr, -100° C $\rightarrow -78^{\circ}$ C; 3. 1M citric acid solution; e) 1. O₃, CH₂Cl₂, -78° C; 2. Ac₂O, cat. pyridine, r.t.

For the purpose of flexibility and convenience, the sequence described in our previous paper [3d] was modified in order to prepare a series of butenolides 1. As depicted in Scheme 2, the chiral auxiliary is introduced by condensation of the 2-oxoester 4 with the enantiopure hydrazine (S)-1-amino-2-(1-ethyl-1-methoxypropyl)pyrrolidine (SAEP) [4] to give the hydrazone (S)-5 exclusively as (E)-isomer. The lithium azaenolate of hydrazone 5 was prepared with lithium diisopropylamide (LDA) in the presence of lithium bromide in THF and allowed to react at -90 °C with a variety of aldehydes to afford the aldol adducts 6a-e (yields: 46 - 94%; de = $73 - \ge 98\%$ determined by NMR spectroscopy). The configuration of the major aldol adducts were assigned in the case of the aldols 6a-e based on the stereochemical model for aldol reactions via SAMP/RAMP hydrazones [5]. Furthermore, the structure of aldol 6c has been unambiguously determined by single-crystal X-ray analysis of its corresponding benzyloxymethyl ether [3d]. In addition, the structure of aldol adduct 6b was further proven by the following chemical conversion to the natural product 3 of known absolute configuration.

Lactonization of aldol adducts 6a-e to the lactones 7a-e was easily achieved by treating 6a-e with

potassium-t-butoxide in THF at -30 °C. After flash column chromatography the diastereomerically pure lactones **7a-e** were obtained in good yields (Table 1). The 3,4-disubstituted-hydrazonelactones **7f-g** were conveniently prepared in good yields with high diastereomeric excesses (de > 97%) via alkylation of the lithium azaenolate of lactone **7a** at -100°C to -70°C with methyl iodide and benzyl bromide, respectively. The configuration of the newly formed stereogenic centers, which are destroyed by tautomerism in the subsequent conversion to butenolides **1f-g**, was not determined.

7a-g	yield(%)	de(%) ^a	1a-g	yield(%) ^b	ee(%)	2a-d,f,h and 3	yield(%)	ee(%)°	$[\alpha]_D^{RT}$ (c, CHCl ₃)	confg.
7a	86	>98	1a	33	91 ^d	2a	75	91	79.8 (0.1)	2S,4R
7b	66	>98	1 b	48	90	2 b	62	90	33.5 (1.0)	2 <i>S</i> ,4 <i>S</i>
7 c	80	≥98	1 c	56	$90^{\rm e}$	2 c	77	90	42.7 (0.75)	2S,4R
7 d	87	≥98	1 d	56	89e	2 d	88	89	38.3 (0.6)	2S,4R
7 e	72	≥98	1 e	12	n.d.	2 f	57	94	67.1 (0.35)	25,35,4
7 f	66	>98	1 f	61	94^{d}	2h	10 ^f	n.d	n.d.	25.45

Table 1. Asymmetric synthesis of 2-acetoxy-butyrolactones 2a-d,f,h and the natural hunger substance 3

3

87

90

10 (0.4)

n.d.

62

7 g

51

>97

1 g

Cleavage of hydrazonelactones 7a-g was most satisfatorily carried out at -78° C by ozonolysis to furnish the unstable α -keto lactones, which were immediately acetylated (Ac₂O, pyridine) to give butenolides 1a-g in reasonable yields. Only in the case of the conversion of 7e to 1e was the reaction complex and the chemical yield was significantly lower. The racemization at C-4 was observed but was very limited, due to the use of a catalytic amount of pyridine as a base. The ee values of 1a, 1c, 1d and 1f were determined by capillary gas chromatography on chiral stationary phases.

Hydrogenation of the butenolides 1a-d and 1f over palladium on carbon in ethanol proceeded smoothly with the expected high cis-stereoselectivity yielding 2a-d and 2f, respectively [5]. This specific cis-stereochemistry was attributed to the steric hinderance of the side chain at C-4, which led to the cis-addition of hydrogen from the least hindered face of the 2,3-double bond to produce cis-2a-d, f. The NMR spectra of these were fully consistent with cis-stereochemistry [6]. The ee values of 2a, 2c, 2d and 2f refer to the ee values of corresponding 1a, 1c, 1d and 1f, which were determined by GC. It was found that in some cases (e.g. 2a, 2c, and 2d), palladium on calcium carbonate was more effective in inducing high cis-stereoselection than palladium on carbon. In the case of the hydrogenation of 1b, 2h was also isolated as a product. If the reaction time was longer, e.g. 48 h, the benzyl group of 2h could be removed by further hydrogenolysis to give 2b.

Catalytic hydrogenation of **1e** over palladium on carbon, however, did not give a satisfactory result to yield the corresponding 2-acetoxy-4-phenyl-butyrolactone. One product was identified as 2-acetoxy-4-phenyl-butyric acid, obviously produced by the reduction of the 2,3-double bond and hydrogenolysis of the C (4)-O single bond. In addition, hydrogenation of **1g** over palladium on carbon was not a clean reaction either, and if palladium on calcium carbonate was employed as the catalyst, the hydrogenation reaction did not take place. This may be due to the steric hindrance of the benzyl group at C-3.

As an application of the above process in natural product synthesis, 3-DPA lactone 3, known as a natural hunger substance, was synthesized. Treatment of 2b with aqueous sodium hydroxide in methanol and subsequent acidification gave (S,S)-2-hydroxy-4-hydroxymethyl-butyrolactone (S,S)-3 in 87% yield, which was spectroscopically consistent with the reported one [2a].

^a Determined by NMR spectroscopy. ^b Yield for two steps. ^c Based on the ee value of compounds 1. ^d Determined by GC (Chirasil dex, 25M). ^c Determined by GC (Lipodex E, 25M). ^f Isolated as a product from the hydrogenation reaction mixture of 1b. n.d. = not determined.

In summary, a flexible approach to highly enantiomerically enriched 4-mono- and 3,4-disubstituted 2-acetoxy-butyrolactones 2 has been achieved, based on an asymmetric aldol reaction and a stereoselective hydrogenation of butenolides 1 as key steps. An application of this process led to the asymmetric synthesis of lactone 3, a natural hunger substance.

Experimental Section

General: Solvents were dried immediately prior to use. Dry THF was distilled from potassium/benzophenone under argon. Dichloromethane was distilled from CaH₂. Ether and petroleum ether were distilled prior to use. Commercial reagents were used directively as received. All reaction were carried out under anhydrous conditions under argon, unless otherwise stated. Yields refer to chromatographically and spectroscopically homogeneous materials.

Optical rotations were measured on a Perkin-Elmer P241 polarimeter and solvents of UVASOL quality (Merck). Microanalyses were obtained with a CHN-O-RAPID elemental analyser. ¹H and ¹³C NMR spectra were recorded on a Varian VXR 300 (300 and 75 MHz) with TMS as the internal standard. IR spectra were recorded on a 1720 X and 1750 spectrophotometer. Mass spectra were obtained on a Varian MAT 212. High-resolution mass spectra were recorded on a Finnigan MAT 95. Melting points were measured on a Büchi apparatus and are uncorrected.

General procedure for aldol reactions with SAEP-hydrazone 5: A solution of LDA/LiBr was prepared by addition of n-BuLi in n-hexane (1.6 M, 0.90 mL, 1.44 mmol) to a solution of diisopropylamine (217 μl, 1.57 mmol) and LiBr (124 mg, 1.44 mmol) in THF (3 mL) at 0 °C. To this LDA/LiBr solution was added dropwise a solution of hydrazone 5 [3]. (621 mg, 1.31 mmol) in THF (5 mL) at -78 °C. The reaction mixture was stirred at this temperature for 1h and then cooled to -90°C. The aldehyde (1.44 mmol) was added dropwise by syringe. The reaction solution was kept at -90 °C for 1h, warmed to -78 °C, and kept for 1h. The reaction was quenched by the addition of saturated NH₄Cl solution and diluted with ether. The organic layer was seperated, washed with water, buffer solution (PH 7), brine and dried over MgSO₄. The solvent was removed in vacuo and the aldol product 6 was obtained after flash column chromatography.

(*S,R*)-(+)-1-[3-Hydroxy-1-(2,6-di-tert-butyl-4-methoxy-1-phenoxycarbonyl)-1-butylidene-amino]-2-(1-ethyl-1-methoxypropyl)pyrrolidine (6a): The general aldol procedure was followed with acetaldehyde as a reactant. Purification by flash column chromatography (silica gel, petroleum ether /diethyl ether 1 : 2) provided 6a as a highly viscous yellow oil (82%), de = 78% (1 H NMR); [α]_D²² = 516 (c 1.25, CHCl₃); 1 H NMR (300 MHz, CDCl₃): δ = 0.84-0.88 (m, 6H, (CH₂CH₃)₂), 1.30, 1.35 (2s, 2 x 9 H, 2 x C(CH₃)₃), 1.54-1.74 (m, 4H, 2 x CH₂CH₃), 1.90-2.05 (m, 4 H, CH₂CH₂), 2.72 (dd, J = 14.78, J = 4.02, 1H, CH₂C=N), 2.75 (br, 1H, OH), 2.88 (dd, J = 14.78, J = 8.4, 1H, CH₂C=N), 3.26 (s, 3H, COCH₃), 3.37 (m, 1H, CH₂N), 3.65 (m, 1H, CH₂N), 3.81 (s, 3H, ArOCH₃), 3.98 (m, 1H, CHN), 4.16 (m,1H, CHOH), 6.87 (m,2H, 2ArH); 13 C NMR (75 MHz, CDCl₃): δ = 7.97, 8.19 (2xCH₂CH₃), 23.78, 23.92 (2xCH₂CH₃), 24.11 (CH₃CHOH), 25.25 (NCH₂CH₂), 26.84 (NCHCH₂), 31.09, 31.51 (2x C(CH₃)₃), 35.61, 35.74 (2x C(CH₃)₃), 39.53 (CH₂C=N), 50.34 (COCH₃), 55.25 (NCH₂), 56.66 (ArOCH₃), 65.66 (NCH), 72.89 (CHOH), 80.38 (COCH₃), 111.52, 111.59 (2 arom C), 133.07 (CO₂Ar), 142.40 (arom C), 143.57, 143.72 (2 arom C), 156.09 (arom C),168.30 (C=N); IR (CHCl₃): v = 3432, 2968, 1710, 1589, 1562, 1456, 1430, 1365, 1303, 1268, 1106, 757 cm⁻¹; MS (CI): m/z (%) = 519 (100, M⁺); Anal. Calcd for C₃₀H₅₀N₂O₅ (518.74): 69.46, H 9.71, N 5.40; Found: C 69.51, H 9.87, N 5.75.

(S,S)-(+)-1-[4-Benzyloxy-3-hydroxy-1-(2,6-di-tert-butyl-4-methoxy-1-phenoxycarbonyl)-1-butylideneamino]-2-(1-ethyl-1-methoxypropyl)pyrrolidine (6b): The general aldol procedure was followed with benzyloxyacetaldehyde as a reactant. Purification by flash column chromatography (silica

gel, petroleum ether/diethyl ether 1 : 1) provided **6b** as a highly viscous yellow oil (46%), de = 73% (1 H NMR); [α]_D²² = 422.2 (c 0.5, CHCl₃); 1 H NMR(300 MHz, CDCl₃): δ = 0.83-0.85 (m, 6H, 2CH₂CH₃), 1.31, 1.34 (2s, 2x9H, 2xC(CH₃)₃), 1.54-1.80 (m, 4H, 2xCH₂CH₃), 1.85-2.03 (m, 4H, CH₂CH₂), 2.84 (d, J = 6.04, 2H, CH₂C=N), 3.22 (s, 3H, COCH₃), 3.46-3.51 (m, 3H, CH₂CHOH, N-HCH), 3.69-3.72 (m, 1H, N-HCH), 3.80 (s, 3H, ArOCH₃), 3.93-3.95 (m, 1H, CHN), 4.12-4.16 (m, 1H, CHOH), 4.53 (d, J = 1.64, 2H, PhCH₂O), 6.87 (m, 2H, ArH), 7.28-7.36 (m, 5H, ArH); 13 C NMR (75 MHz, CDCl₃): δ = 8.02, 8.04 (2xCH₂CH₃), 23.72, 23.75 (2xCH₂CH₃), 25.17 (NCH₂CH₂), 26.87 (NCHCH₂), 31.132, 31.53 (2x C(CH₃)₃), 34.01 (CH₂C=N), 35.62, 35.77 (2x C(CH₃)₃), 50.39 (COCH₃), 55.30 (OCH₂CHOH), 55.32 (NCH₂), 56.40 (ArOCH₃), 68.35 (NCH), 73.01(CHOH), 74.48 (COCH₃), 80.44 (PhCH₂), 111.59 (arom C), 127.71 (arom C), 127.78 (arom C), 128.47 (arom C), 138.20 (arom C), 143.76, 143.78 (arom C), 156.10 (arom C), 168.50 (C=N); IR (film): ν = 3433, 3089, 2966, 1712, 1589, 1565, 1496, 1455, 1304, 1218, 1174, 755 cm⁻¹; MS (CI): m/z (%) = 625(44, M⁺),389 (18), 237(100); Anal. Calcd for C₁₇H₅₆N₂O₆(624.86): C 71.12, H 9.03, N 4.48; Found: C 70.99, H 9.37, N 4.42.

General procedure for lactonization of aldol adducts 6a-e to hydrazonelactones 7a-e: To a solution of the aldol adduct 6 (1 mmol) in THF (10 mL) was added t-BuOK (1.1 mmol) at -30 °C under argon. The reaction mixture was stirred at this temperature until TLC indicated complete reaction. The reaction was quenched by the addition of citric acid solution (1M, 1 mL) and diluted with ether. After warming to room temperature, the organic layer was separated, washed with water, saturated NaHCO₃ solution, brine, and dried over MgSO₄. The solvent was removed in vacuo and the hydrazonelactone 7 was obtained after flash column chromatography.

(S,R)-(+)-N-[2-(1-Ethyl-1-methoxypropyl)pyrrolidine]-3-imino-5-methyl-dihydro-2-

furanone (7a): The aldol adduct 6a was cyclized as outlined above. After flash column chromatography (silica gel, petroleum ether/diethyl ether 1:2), the furanone 7a was obtained as a colourless solid (86%), m.p. 90-92 °C; de > 98% (¹H NMR); $[\alpha]_D^{22} = 1056$ (c 0.7, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ = 0.87, 0.90 (2t, J = 7.38, 6H, C(CH₂CH₃)₂), 1.48 (d, J = 6.04, 3H, CH₃CHO), 1.53-1.74 (m, 4H, C(CH₂CH₃)₂), 1.90-2.10 (m, 4H, CH₂CH₂), 2.75(dd, J = 16.78, J = 6.71, 1H, CH₂C=N), 3.07 (dd, J = 16.78, J = 7.72, 1H, CH₂C=N), 3.19 (m, 1H, NCH₂CH₂), 3.27 (s, 3H, OCH₃), 3.70 (m, 1H, NCH₂CH₂), 4.01 (m, 1H, NCHCH₂), 4.62 (m, 1H, CH₃CHO); ¹³C NMR (75 MHz, CDCl₃): δ = 8.0, 8.27 (2CH₂CH₃), 22.46 (CH₃CHO), 23.92, 24.01 (2 CCH₂CH₃), 24.74 (NCH₂CH₂), 26.49 (NCHCH₂), 35.88 (CH₂C=N), 50.49 (COCH₃), 53.69 (NCH₂), 71.76 (NCH), 72.47 (OCH), 80.47 (COCH₃), 127.35 (C=N), 168.80 (C=O); IR (KBr): v = 2968, 2880, 1765, 1686, 1655, 1508, 1498, 1386, 1291 1049 cm⁻¹; MS (70 eV, EI): m/z (%) = 282 (0.2, M⁺), 181 (69), 137 (39), 101 (84), 70 (100); Anal. Calcd for C₁₅H₂₆N₂O₃ (282.382): C 63.80, H 9.28, N 9.92; Found: C 63.61, H 9.31, N 9.85.

(S,S)-(+)-5-Benzyloxymethyl-N-[2-(1-ethyl-1-methoxypropyl)pyrrolidine]-3-imino-di-

hydro-2-furanone (7b): The aldol adduct 6b was cyclized as outlined above. After flash column chromatography (silica gel, petroleum ether/diethyl ether 1:2), the furanone 7a was obtained as a colourless oil (66%), de > 98% (¹H NMR); $[\alpha]_D^{22} = 457.4$ (c 1.35, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ = 0.87, 0.89 (2t, J = 7.72, 6H, 2xCH₂CH₃), 1.50-1.75 (m, 4H, 2xCH₂CH₃), 1.88-2.30 (m, 4H, CH₂CH₂), 2.91 (dd, J = 17.1, J = 8.39, 1H, CH₂C=N), 3.07 (dd, J = 17.1, J = 5.7, 1H, CH₂C=N), 3.16-3.22 (m, 1H, CH₂N), 3.26 (s, 3H, OCH₃), 3.69 (m, 2H, OCH₂CHO), 3.70-3.73 (m, 1H, CH₂N), 4.02 (m, 1H, CHN), 4.61 (d, J = 1.1, 2H, PhCH₂O), 4.64-4.69 (m, 1H, CHO), 7.29 (m, 5H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ = 8.0, 8.30 (2CH₂CH₃), 23.88, 24.0 (2 CH₂CH₃), 24.80 (NCH₂CH₂), 26.49 (NCHCH₂), 30.27 (CH₂C=N), 50.50 (COCH₃), 53.68 (NCH₂), 71.33 (OCH₂CHO), 71.79 (NCH), 73.73 (OCH), 74.32 (PhCH₂O), 80.49 (COCH₃), 127.79, 127.92, 128.52 (arom C), 168.53 (C=O); IR (CHCl₃): ν = 3064, 2971, 1757, 1657, 1579, 1496, 1455, 1345, 1215, 1183, 1029, 699 cm⁻¹; MS (70 eV, EI): m/z (%) = 388 (0.35, M⁺), 287 (95), 101 (33), 91 (100), 70 (85); Anal. Calcd for C₂₂H₃₂N₂O₄(388.51): C 68.01, H 8.30, N 7.21; Found: C 67.87, H 8.34, N 7.39.

General procedure for preparation of 4,5-disubstituted hydrazonefuranone 7f-g: A solution of LDA/LiBr was prepared by addition of n-BuLi in n-hexane (1.6 M, 908 μl, 1.47 mmol) to a solution of diisopropylamine (216 μl, 1.58 mmol) and LiBr (108 mg, 1.24 mmol) in THF (2 mL) at 0 °C. To this LDA/LiBr solution was added dropwise a solution of hydrazone 7a (320 mg, 1.13 mmol) in THF (5 mL) at -78 °C. The reaction mixture was stirred at this temperature for 2 h and then cooled to -100°C. CH₃I (1.44 mmol) or BnBr (1.24 mmol) was added dropwise by syringe. The reaction solution was kept at -100 °C for 1h, warmed to -78 °C, and kept for 5 h. The reaction was quenched by the addition of citric acid solution (1M, 1.5 mL) and diluted with ether. After warming to room temperature, the organic layer was separated, washed with water, saturated NaHCO₃ solution, brine and dried over MgSO₄. The solvent was removed in vacuo and the hydrazonefuranones 7f-g were obtained after flash column chromatography (silica gel, petroleum ether /diethyl ether 1 : 1).

(*S*, *R*, *S**)-(+)-4,5-Dimethyl-N-[2-(1-ethyl-1-methoxypropyl)pyrrolidine]-3-iminodihydro-2-furanone (7f): The hydrazonefuranone 7a was alkylated with CH₃I as outlined above to give 7f as colourless solid(66%), m.p. 85.5-87 °C; de > 98% (¹H NMR); [α]_D²² = 1012.5 (c 0.2, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ = 0.87, 0.89 (2t, J = 7.32, 6H, 2xCH₂CH₃), 1.19 (d, J = 7.02, 3H, CH₃CHC=N), 1.41 (d, J = 6.40, 3H, CH₃CHO), 1.45-1.70 (m, 4H, 2xCH₂CH₃), 1.91-2.13 (m, 4H, CH₂CH₂), 2.88 (dq, J = 2.44, J = 7.02, 1H, CH₃CHC=N), 3.04-3.07 (m, 1H, CH₂N), 3.24 (s, 3H, OCH₃), 3.57-3.62 (m, 1H, CH₂N), 4.01-4.03 (m, 1H, CHN),4.28 (dq, J = 2.44, J = 6.40, 1H, CHO); ¹³C NMR (75 MHz, CDCl₃): δ = 7.97, 8.27 (2CH₂CH₃), 17.25 (CH₃CHC=N), 22.21 (CH₃CHO), 23.65, 23.99 (2 CH₂CH₃), 24.75 (NCH₂CH₂), 26.67 (NCHCH₂), 40.29 (CHC=N), 50.48 (COCH₃), 53.85 (NCH₂), 72.40 (NCH), 79.62 (CH₃CHO), 80.62 (COCH₃); IR (KBr): v = 2970, 1747, 1583, 1451, 1345, 1211, 1145, 1035, 924 cm⁻¹; MS (70 eV, EI): m/z (%) = 296 (1.6, M⁺), 195 (100), 181 (9), 101 (19); Anal. Calcd for C₁₆H₂₈N₂O₃: C 64.83, H 9.52, N 9.45; Found: C 64.52, H 9.62, N 9.49.

(*S,R,S**)-(+)-4-Benzyl-N-[2-(1-ethyl-1-methoxypropyl)pyrrolidine]-3-imino-5-methyl-dihydro-2-furanone (7g): The hydrazonefuranone 7a was alkylated with BnBr as outlined above to give 7g as a colourless solid (51%), m.p. 107.5-108 °C; de > 97% (¹H NMR); $[α]_D^{22} = 733.3$ (c 0.15, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ = 0.90, 0.93 (2t, J = 7.69, 6H, 2xCH₂CH₃), 1.20 (d, J = 6.32, 3H, CH₃CHO), 1.50-1.74 (m, 4H, 2xCH₂CH₃), 1.93-2.20 (m, 4H, CH₂CH₂), 2.46 (m, 1H, CHC=N), 3.12-3.22 (m, 3H, HCHN, PhCH₂), 3.26 (s, 3H, OCH₃), 3.79-3.82 (m, 1H, CH₂N), 4.06-4.10 (dd, J = 3.57, J = 8.52, 1H, CHN), 4.43 (dq, J = 1.1, J = 6.32, 1H, CHO), 7.18-7.36 (m, 5H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ = 8.10, 8.39 (2CH₂CH₃), 22.97 (CH₃CHO), 23.88, 23.89 (2 CH₂CH₃), 24.87 (NCH₂CH₂), 26.65 (NCHCH₂), 36.20 (PhCH₂), 46.90 (CHC=N), 50.56 (COCH₃), 54.36 (NCH₂), 72.60 (NCH), 76.31 (CHO), 80.60 (COCH₃), 125.20 (C=N), 127.06, 128.93, 129.43, 129.80, 137.60 (arom C), 168.0 (C=O); IR (CHCl₃): ν = 2973, 1749, 1574, 1496, 1454, 1320, 1216, 1183, 755 cm⁻¹; MS (70 eV, EI): m/z (%) = 372 (1.9, M⁺), 271 (100), 101 (16), 91 (42); Anal. Calcd for C₂₂H₃₂N₂O₃: C 70.94, H 8.66, N 7.52; Found: C 70.83, H 8.71, N 7.49.

General procedure for ozonolysis of the hydrazonelactones 7a-g and subsequent acylation, to afford butenolides 1a-g: The hydrazonelactone 7 was dissolved in CH₂Cl₂ (50 mL) and cooled to -78°C. Ozone was passed through the solution at this temperature until the reaction was complete (TLC). The solvent was removed in vacuo and to the residue was added Ac₂O (5 mL) and a catalytic amount of pyridine under argon. The reaction mixture was stirred at room temperature under argon for 24 h. The reaction solution was poured into ice-cold aqueous NaHCO₃, stirred for 1h, and was then extracted with Et₂O. The combined ethereal extracts were washed with brine, dried over MgSO₄ and concentrated in vacuo. Flash column chromatography (silica gel) yielded 1a-g.

(R)-(-)-3-Acetoxy-5-methyl-2(5H)-furanone (1a): The hydrazone 7a was treated with ozone and Ac₂O as described above. Flash column chromatography (silica gel, petroleum ether/diethyl ether 2: 1) yielded

- 1a as colourless oil (33%), ee = 91% (GC, chiral stationary phase); $[\alpha]_D^{22} = -16$ (c 0.5, CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta = 1.50$ (d, J = 6.71, 3H, CH₃CHO), 2.31 (s, 3H, CH₃C=O), 5.14 (dq, J = 1.68, J = 6.72, H-5), 7.27 (d, J = 1.68, 1H, H-4); ¹³C NMR (75 MHz, CDCl₃): $\delta = 19.42$ (CH₃CHO), 20.93 (CH₃C=O), 75.68 (C-5), 134.73 (C-4), 137.88 (C-3), 167.20 (CH₃C=O), 216.50 (C-2); IR (film): v = 2981, 1774, 1666, 1648, 1447, 1374, 1196, 1110, 1089, 879 cm⁻¹; MS (CI): m/z (%) = 157 (100, M⁺ + 1). Anal. Calcd for C₇H₈O₄ (156.14): C 53.85, H 5.16; Found: C 53.57, H 5.51.
- (*S*)-(-)-3-Acetoxy-5-benzyloxymethyl-2(5H)-furanone (1b): The hydrazone 7b was treated with ozone and Ac₂O as described above. Flash column chromatography (silica gel, petroleum ether/diethyl ether 2: 1) yielded 1b as a colourless oil (48%), $\left[\alpha\right]_{D}^{22} = -28.6$ (c 1.05, CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta = 2.31$ (s, 3H, CH₃C=O), 3.71 (d, J = 5.04, 2H, OCH₂CHO), 4.58 (br, 2H, PhCH₂), 5.16 (dt, J = 5.04, J = 2.02, 1H, H-5), 7.28 (d, J = 2.02, 1H, H-4), 7.30-7.36 (m, 5H, ArH); ¹³C NMR (75 MHz, CDCl₃): $\delta = 20.92$ (CH₃CO), 69.69 (OCH₂CHO), 73.79 (PhCH₂), 78.23 (C-5), 127.76, 128.03, 128.55 (arom *C*), 131.04 (*C*-4), 137.21 (*C*-3), 167.03 (*C*=OCH₃); IR (CHCl₃): $\nu = 3089$, 3065, 2918, 1777, 1667, 1582, 1496, 1454, 1371, 1210, 1193, 1115, 1012, 755 cm⁻¹; MS (CI): m/z (%) = (263, M⁺ + 1). No satisfactory elemental analysis was obtained.
- (*R*)-(-)-3-Acetoxy-5-(2-methylpropyl)-2(5H)-furanone (1c): The hydrazone 7c [3] was treated with ozone and Ac₂O as described above. Flash column chromatography (silica gel, petroleum ether/CH₂Cl₂ 1:2) yielded 1c as a colourless solid (56%), m.p. 41.5-42 °C; ee = 90% (GC, chiral stationary phase); $[\alpha]_D^{22} = -15.7$ (c 0.35, CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta = 0.99$ (d, J = 4.12, 3H, CH₃CH), 1.01 (d, J = 4.12, 3H, CH₃CH), 1.59 (m, 2H, CH₂CHO), 1.90 (m, 1H, CH(CH₃)₂), 2.31 (s, 3H, CH₃CO), 5.07 (m, 1H, H-4), 7.25 (d, J = 1.92, 1H, H-3); ¹³C NMR (75 MHz, CDCl₃): $\delta = 20.92$ (CH₃CO), 22.20, 22.99 (CH(CH₃)₂), 25.12 (CH₂CHO), 42.78 (CH(CH₃)₂), 78.10 (C-5), 134.24 (C-4), 137.46 (C-3), 167.19 (COCH₃), 216.20 (C-2); IR (KBr): $\nu = 2958$, 2873, 1774, 1646, 1560, 1431, 1310, 1125, 1030 cm⁻¹; MS (70 eV, EI): m/z (%) = 198 (2.4, M⁺), 156 (15), 128 (34), 111 (83), 55 (100); Anal. Calcd for C₁₀H₁₄O₄ (198.22): C 60.59, H 7.12; Found: C 60.64, H 7.01.
- (*R*)-(-)-3-Acetoxy-5-butyl-2(5H)-furanone (1d): The hydrazone 7d [3] was treated with ozone and Ac₂O as described above. Flash column chromatography (silica gel, petroleum ether/CH₂Cl₂ 1 : 1) yielded 1d as a colourless oil (56%), ee = 89 % (GC, chiral stationary phase); [α]_D²² = -14 (c 0.25, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ = 0.92 (t, J = 6.72, 3H, *CH*₃CH₂), 1.32-1.48 (m, 4H, CH₃CH₂CH₂), 1.67-1.82 (m, 2H, *CH*₂CHO), 2.31 (s, 3H, *CH*₃CO), 5.03 (dt, J = 1.68, J = 5.37, 1H, *H*-5), 7.25 (d, J = 2.01, 1H, *H*-4); ¹³C NMR (75 MHz, CDCl₃): δ = 13.83 (*C*H₃CH₂), 20.93 (*C*H₃CO), 22.39 (*C*H₃CH₂), 26.81 (*C*H₃CH₂CH₂), 33.33 (*C*H₃CH₂CH₂CH₂), 79.37 (*C*-5), 133.85 (*C*-4), 137.80 (*C*-3), 167.19 (*C*H₃CO); IR (film): v = 3103, 2959, 1775, 1666, 1647, 1467, 1372, 1195, 1031, 879 cm⁻¹; MS (70 eV, EI): m/z (%) =199 (2.4, M⁺ + 1), 128 (52), 111(66), 100(14), 55 (100); Anal. Calcd for C₁₀H₁₄O₄ (198.22): C 60.59, H 7.12; Found: C 60.47, H 7.36.
- (S)-(-)-3-Acetoxy-5-phenyl-2(5H)-furanone (1e): The hydrazone 7e [3] was treated with ozone and Ac₂O as described above. Flash column chromatography (silica gel, petroleum ether/CH₂Cl₂ 1 : 4) yielded 1e as a colourless oil (12%), ¹H NMR (300 MHz, CDCl₃): δ = 2.34 (s, 3H, CH₃CO), 6.01 (d, J = 2.02, 1H, H-5), 7.30-7.42 (m, 5H, ArH), 7.35 (d, J = 2.02, 1H, H-4); ¹³C NMR (75 MHz, CDCl₃): δ = 20.91 (CH₃CO), 80.36 (C-5), 126.80, 129.10, 129.60 (arom C), 133.34 (C-4), 134.17 (arom C), 137.40 (C-3), 167.10 (CH₃CO); IR (film): v = 3106, 3035, 2938, 1778, 1665, 1647, 1602, 1497, 1456, 1371, 1194, 1046, 700 cm⁻¹; MS (70 eV, EI): m/z (%) = 218 (9, M⁺), 176 (59), 147 (27), 131 (100), 103 (60); No satisfactory elemental analysis was obtained.
- (R)-(-)-3-Acetoxy-4,5-dimethyl-2(5H)-furanone (1f): The hydrazone 7f was treated with ozone and Ac₂O as described above. Flash column chromatography (silica gel, petroleum ether/diethyl ether 1:1) yielded

1f as a colourless oil (61%), ee = 94% (GC, chiral stationary phase); $[\alpha]_D^{22} = -10$ °C (c 0.2, CHCl₃); 1 H NMR (300 MHz, CDCl₃): δ = 1.49 (d, J = 7.05, 3H, CH₃CHO), 1.92 (d, J = 0.68), 3H, CH₃C=C), 2.30 (s, 3H, CH₃CO), 4.94 (dq, J = 1.01, J = 7.05, 1H, H-5); 13 C NMR (75 MHz, CDCl₃): δ = 18.26 (CH₃CHO), 20.29 (CH₃CO), 29.90 (CH₃C=C), 80.80 (C-5), 134.3 (C-4), 150.30 (C-3), 167.11 (CH₃CO), 216.51 (C-2); IR (film): ν = 2985, 1762, 1698, 1440, 1373, 1330, 1108, 1064, 931, 597 cm $^{-1}$; MS (70 eV, EI): m/z (%) = 170 (16, M⁺), 128 (80), 83 (100), 74 (42); Anal. Calcd for C₈H₁₀O₄ (170.16): C 56.47, H 5.92; Found: C 56.31, H 5.84.

(*R*)-(-)-3-Acetoxy-4-benzyl-5-methyl-2(5H)-furanone (1g): The hydrazone 7g was treated with ozone and Ac₂O as described above. Flash column chromatography (silica gel, petroleum ether/diethyl ether 1: 1) yielded 1g as a colourless oil (62%), $[\alpha]_D^{22} = -107.8$ (c 0.45, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ = 1.44 (d, J = 6.59, 3H, CH₃CHO), 2.18 (s, 3H, CH₃CO), 3.48 (d, J = 16.1, 1H, PhCH₂), 3.79 (d, J = 16.1, 1H, PhCH₂); 4.88 (q, J = 6.59, 1H, H-5), 7.19-7.38 (m, 5H, ArH); ¹³C NMR (75 MHz, CDCl₃): δ = 18.47 (CH₃CHO), 20.20 (CH₃CO), 31.56 (CH₂C=C), 127.43, 128.86, 129.05 (arom *C*), 134.89 (*C*-4), 152.10 (*C*-3), 167.10 (CH₃CO); IR (film): ν = 3087, 3063, 1768, 1693, 1603, 1585, 1455, 1327, 1192, 1058, 707 cm⁻¹; MS (70 eV, EI): m/z (%) = 246 (48, M*), 204 (64), 159 (75), 131(100), 91 (82); Anal. Calcd for C₁₄H₁₄O₄(246.26): C 68.28, H 5.73; Found: C 67.90, H 5.83.

General procedure for catalytic hydrogenation of butenolides 1a-g: The butenolides 1a-g (0.4 mmol) and Pd on carbon (10%, 18 mg) or Pd on $CaCO_3(5\%$, 26 mg) in EtOH (5 mL) were hydrogenated at 1 atm for 24 h and filtered through Celite, and the catalyst was leached with more EtOH. The solvent was removed in vacuo and the residue was purified by flash column chromatography (silica gel, petroleum ether/dicthyl ether) to give butyrolactones 2a-d, f, h.

(3S,5R)-(+)-3-Acetoxy-5-methyl-tetrahedrofuran-2-one (2a): The butenolide 1a was hydrogenated over Pd on CaCO₃ as described above. Flash column chromatography (petroleum ether/diethyl ether 2 : 1) afforded 2a as a colourless oil (75%), $[\alpha]_D^{22} = 79.8$ (c 0.1, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ = 1.49 (d, J = 6.05, 3H, CH₃CHO), 1.89 (ddd, J = 12.42, J = 10.74, J = 10.08, 1H, H-4), 2.17 (s, 3H, CH₃CO), 2.82 (ddd, J = 12.42, J = 8.39, J = 5.37, 1H, H-4), 4.57 (m, 1H, H-5), 5.51 (dd, J = 10.74, J = 8.39, 1H, H-3); ¹³C NMR (75 MHz, CDCl₃): δ = 20.62 (CH₃CO), 21.03 (CH₃CHO), 36.77 (C-4), 69.03 (C-5), 73.48 (C-3), 169.86 (CH₃CO), 172.43 (C-2); IR (film): v = 2983, 1787, 1747, 1660, 1451, 1378, 1290, 1022, 906 cm ⁻¹; MS (70 eV, EI): m/z (%) = 159 (4.3, M* + 1), 86 (20), 72 (100); Anal. Calcd for C₇H₁₀O₄ (158.15): C 53.16, H 6.37; Found: C 53.44, H 6.38.

(3S,5S)-(+)-3-Acetoxy-5-hydroxymethyl-tetrahedrofuran-2-one (2b) and (3S,5S)-(+)-3-Acetoxy-5-benzyloxymethyl-tetrahedrofuran-2-one (2h): The butenolide 1b was hydrogenated over Pd on carbon as described above. Flash column chromatography (petroleum ether/diethyl ether 1:4) afforded **2b** (62%) and **2h** (10%) as colourless oils. **2b**: $[\alpha]_D^{22} = 33.5$ (c 1, CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta =$ 2.18 (s, 3H, CH_3CO), 2.25 (ddd, J = 12.76, J = 10.74, J = 10.41, 1H, H-4), 2.32 (br, 1H, OH), 2.69 (ddd, J = 12.76, J = 8.72, J = 6.04, 1H, H-4), 3.68 (dd, J = 12.75, J = 4.36, 1H, OHCH₂), 3.98 (dd, J = 12.75, J = 4.36, 1H, OHCH₂), 3.98 (dd, J = 12.75, J = 4.36, 1H, OHCH₂), 3.98 (dd, J = 12.75, J = 4.36, 1H, OHCH₂), 3.98 (dd, J = 12.75, J = 4.36, 1H, OHCH₂), 3.98 (dd, J = 12.75, J = 4.36, 1H, OHCH₂), 3.98 (dd, J = 12.75, J = 4.36, 1H, OHCH₂), 3.98 (dd, J = 12.75, J = 4.36, 1H, OHCH₂), 3.98 (dd, J = 12.75, J = 4.36, 1H, OHCH₂), 3.98 (dd, J = 12.75, J = 4.36, 1H, OHCH₂), 3.98 (dd, J = 12.75, J = 4.36, 1H, OHCH₂), 3.98 (dd, J = 12.75, J = 4.36, 1H, OHCH₂), 3.98 (dd, J = 12.75, J = 4.36, 1H, OHCH₂), 3.98 (dd, J = 12.75, J = 4.36, 1H, OHCH₂), 3.98 (dd, J = 12.75, J = 4.36, 1H, OHCH₂), 3.98 (dd, J = 12.75, J = 4.36, 1H, OHCH₂), 3.98 (dd, J = 12.75, J = 4.36, 1H, OHCH₂), 3.98 (dd, J = 12.75, J = 4.36, 1H, OHCH₂), 3.98 (dd, J = 12.75, J = 4.36, 1H, OHCH₂), 3.98 (dd, J = 12.75, J = 4.36, J = 1.36, = 2.69, 1H, OHC H_2), 4.58 (m, 1H, H_2 5), 5.53 (dd, J_2 = 10.74, J_2 = 8.72, 1H, H_2 3); ¹³C NMR (75 MHz, $CDCl_{3}): \delta = 20.60 \ (CH_{3}CO), \ 29.59 \ (C-4), \ 63.02 \ (OHCH_{2}), \ 68.66 \ (C-5), \ 77.21 \ (C-3), \ 169.88 \ (CH_{3}CO), \ (C-3), \ (C-$ 172.28 (C-2); IR (CHCl₃): v = 3409, 2941, 1785, 1747, 1643, 1449, 1379, 1340, 1234, 1103, 1021, 611 cm⁻¹; HRMS calcd for $C_7H_{11}O_5$ (M⁺ + 1): 175.0606; Found: 175.0608. **2h**: ¹H NMR (300 MHz, CDCl₃): $\delta =$ 2.16 (s, 3H, CH_3CO), 2.23 (m, 1H, H-4), 2.72 (ddd, J = 12.76, J = 8.73, J = 6.04, 1H, H-4), 3.63 (dd, J = 12.76), J = 12.76, J =5.04, J = 11.42, 1H, OCH, CHO), 3.73 (dd, J = 3.70, J = 11.42, 1H, OCH, CHO), 4.60 (br, 2H, PhCH₂), 4.63 (m, 1H, H-5), 5.50 (dd, J = 10.74, J = 8.73, 1H, H-3), 7.31- 7.36 (m, 5H, ArH); ¹³C NMR (75 MHz, $CDCl_3$): $\delta = 20.60 (CH_3CO)$, 30.74 (CH_3CO), 68.34 (OCH_2CHO), 70.30 (C-5), 73.65 ($PhCH_2$), 75.80 (C-6) 3), 127.75, 127.95, 128.53 (arom C), 169.85 (CH₃CO), 172.25 (C-2); IR (CHCl₃): v = 3064, 2931, 1790, 1748, 1605, 1497, 1454, 1376, 1052, 701 cm⁻¹; MS (70 eV, EI): m/z (%) = 264 (2.5, M⁺), 158 (13), 98(49), 91 (100).

(3S,5R)-(+)-3-Acetoxy-5-(2-methylpropyl)-tetrahedrofuran-2-one (2c): The butenolide 1c was hydrogenated over Pd on CaCO₃ as described above. Flash column chromatography (petroleum ether/diethyl ether 2:1) afforded 2c as a colourless oil (77%), $[\alpha]_D^{22} = 42.7$ (c 0.75, CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta = 0.96$ (d, J = 6.59, 6H, CH(CH₃)₂), 1.1.48-1.76 (m, 3H, (CH₃)₂CHCH₂), 1.87-1.94 (m, 1H, H-4), 2.17 (s, 3H, CH₃CO), 2.80 (ddd, J = 12.64, J = 8.51, J = 5.22, 1H, H-4), 4.52 (m, 1H, H-5), 5.49 (dd, J = 10.99, J = 8.51, 1H, H-3); ¹³C NMR (75 MHz, CDCl₃): $\delta = 20.62$ (CH₃CO), 22.19, 22.84 (CH(CH₃)₂), 24.84 (CH(CH₃)₂), 35.64 (CH₂CHO), 44.66 (C-4), 68.70 (C-5), 75.66 (C-3), 169.84 (CH₃CO), 172.37 (C-2); IR (CHCl₃): $\nu = 2959$, 1790, 1749, 1469, 1376, 1231, 1109, 1001 cm⁻¹; MS (70 eV, EI): m/z (%) = 201 (1.6, M⁺ + 1), 114 (37), 100 (43), 96 (100); Anal. Calcd for C₁₀H₁₆O₄ (200.23): C 59.98, H 8.05; Found: C 59.48, H 8.00.

(3S,5R)-(+)-3-Acetoxy-5-butyl-tetrahedrofuran-2-one (2d): The butenolide 1d was hydrogenated over Pd on CaCO₃ as described above. Flash column chromatography (petroleum ether/diethyl ether 3 : 1) afforded 2d as a colourless oil (88%), $[\alpha]_D^{22} = 38.3$ (c 0.6, CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta = 0.93$ (t, J = 6.71, 3H, CH₃CH₂), 1.39-1.44(m, 4H, CH₃CH₂CH₂), 1.67-1.80 (m, 2H, CH₂CHO),1.91 (m, 1H, H-4), 2.17 (s, 3H, COCH₃), 2.79 (ddd, J = 12.43, J = 8.73, J = 5.38, 1H, H-4), 4.43 (m, 1H, H-5), 5.50 (dd, J = 11.08, J = 8.73, 1H, H-3); ¹³C NMR (75 MHz, CDCl₃): $\delta = 13.87$ (CH₃CH₂), 20.62 (CH₃CO), 22.35 (CH₃CH₂), 27.01 (CH₃CH₂CH₂), 35.12 (2CH₂CHO), 68.78 (C-5), 77.15 (C-3), 169.83 (CH₃CO), 172.37 (C-2); IR (film): v = 2958, 1790, 1749, 1649, 1434, 1377, 1232, 1015cm⁻¹; MS (70 eV, EI): m/z (%) = 201 (5.3, M⁺ + 1), 114 (75), 96(77), 57(100); Anal. Calcd for C₁₀H₁₆O₄ (200.23): C 59.98, H 8.05; Found: C 59.84, H 7.84.

(3S,4S,5R)-(+)-3-Acetoxy-4,5-dimethyltetrahedrofuran-2-one (2f): The butenolide 1f was hydrogenated over Pd on carbon as described above. Flash column chromatography (petroleum ether/diethyl ether 1 : 1) afforded 2f as a colourless oil (57%), $[\alpha]_D^{22} = 67.1$ (c 0.35, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ = 0.91 (d, J = 7.05, 3H, CH₃CHCHO), 1.38 (d, J = 6.38, 3H, CH₃CHO), 2.21 (s, 3H, CH₃CO), 2.82 (ddt, J = 7.39, J = 7.05, J = 4.7, 1H, H-4), 4.63 (dt, J = 6.38, J = 4.7, 1H, H-5), 5.57 (d, J = 7.39, 1H, H-3); ¹³C NMR (75 MHz, CDCl₃): δ = 7.20 (CH₃CHCHO), 15.58 (CH₃CHO), 20.50 (CH₃CO), 37.70 (C-4), 72.01 (C-5), 75.93 (C-3),169.98 (CH₃CO); IR (CHCl₃): ν = 2982, 1790, 1751, 1446, 1375, 1238, 1113, 1002, 893 cm⁻¹; HRMS calcd for C₈H₁₃O₄(M⁺ + 1): 173.0814; Found: 173.0813.

Synthesis of (3S,5S)-(+)-3-hydroxy-5-hydroxymethyl-tetrahedrofuran-2-one (3): A mixture of **2b** (20 mg, 0.12 mmol), 10% NaOH solution (0.5 mL) and MeOH (0.5 mL) was stirred overnight at room temperature. The mixture was acidified with a diluted HCl solution, and then the solvent was removed in high vacuo. The residue was subject to column chromatography (silica gel, EtOAc) to give **3** (13 mg, 87%) as a colourless oil, $[\alpha]_D^{27} = 10.0$ (c 0.4, CHCl₃) (lit. [2a], $[\alpha]_D^{28} = 23.5$, c 3.61, MeOH); ¹H NMR (300 MHz, CD₃OD): δ = 1.98 (ddd, J_{4.4}: = 12.42, J_{3.4}: = J_{4'.5} = 10.74, 1H, H-4'), 2.54 (ddd, J_{4.4}: = 12.43, J_{3.4} = 8.39, J_{4.5} = 5.71, 1H, H-4), 3.59 (dd, J = 12.76, J = 5.04, 1H, OHCH₂), 3.80 (dd, J = 12.76, J = 3.0, 1H, OHCH₂), 4.42-4.50 (m, 1H, H-5), 4.56 (dd, J_{3,4} = 8.39, J_{3,4}: = 10.74, 1H, H-3); ¹³C NMR (75 MHz, CD₃OD): δ = 33.61 (C-4), 63.84 (OHCH₂), 69.32 (C-5), 78.62 (C-3); IR (film): v = 3372, 2947, 2835, 1775, 11651, 1450, 1385, 1205, 1116, 1027, 901, 877, 651 cm⁻¹; HRMS calcd for C₅H₉O₄ (M⁺ + 1): 133.0501; Found: 133.0500.

Acknowledgements: This research was supported by the Deutsche Forschungsgemeinschaft (Leibniz Award, Sonderforschungsbereich 380) and the Fonds der Chemischen Industrie. We also thank Degussa AG, BASF AG, Bayer AG and former Hoechst AG for their generous donation of chemicals.

References and Notes

- [1] a) Nakano, T.; Ino, Y.; Nagai, Y. Chem. Lett. 1989, 567-568. b) Uchikawa, O.; Okukado, N.; Sakata, T.; Arase, K.; Terada, K. Bull. Chem. Soc. Jpn. 1988, 61, 2025-2029. c) Barrett, A. G. M.; Sheth, H. G. J. Org. Chem. 1983, 48, 5017-5022. d) Hanessian, S.; Sahoo, S. P.; Murray, P. J. Tetrahedron Lett. 1985, 26, 5631-5634. e) Nardo, C. D. N.; Jeroncic, L. O.; Lederkremer, R. M.; Varela, O. J. Org. Chem. 1996, 61, 4007-4013. f) Niihata, S.; Ebata, T.; Kawakami, H.; Matsushita, H. Bull. Chem. Soc. Jpn. 1995, 68, 1509-1512.
- [2] a) Matsumoto, K.; Ebata, T.; Koseki, K.; Kawakami, H.; Okano, K.; Matsushita, H. Heterocycles 1992, 34, 363-367. b) Choquet-Farnier, C.; Stasik, I.; Beaupere, D. Carbohydrate Research 1997, 303, 185-191. c) Bock, K.; Lundt, I.; Pedersen, C. Acta Chem. Scand. B 1981, 35, 155-162.
- [3] a) Enders, D.; Dyker, H.; Raabe, G. Angew. Chem. 1992, 104, 649-651; Angew. Chem. Int. Ed. Engl. 1992, 31, 618-620; b) Enders, D.; Dyker, H.; Raabe, G.; Runsink, J. Synlett 1992, 901-903; c) Enders, D.; Dyker, H.; Raabe, G. Angew. Chem. 1993, 105, 420-423; Angew. Chem. Int. Ed. Engl. 1993, 32, 421-423; d) Enders, D.; Dyker, H.; Leusink, F. R. Chem. Eur. J. 1998, 4, 311-320.
- [4] Enders, D.; Kipphardt, H.; Gerdes, P.; Breña-Valle, L. J.; Bhushan, V. Bull. Soc. Chim. Belg. 1988, 97, 691-704.
- [5] Eichenauer, H.; Friedrich, E.; Lutz, W.; Enders, D. Angew. Chem. 1978, 90, 219-220; Angew. Chem. Int. Ed. Engl. 1978, 17, 206-207. b) Enders, D.; Eichenauer, H.; Pieter, R. Chem. Ber. 1979, 112, 3703-3714. c) Enders, D. Chem. Scr. 1985, 25, 139-147.
- [6] Ollis et al. noted the high cis-stereoselectivity on the catalytic hydrogenation of some butenolides, Hussain, S. A. M. T.; Ollis, W. D.; Stoddart, J. F. J. Chem. Soc. Perkin 1 1975, 1480-1493.